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String Theory Fundamentals



Different String Theories

Dualities

1994: Second Superstring Revolution 
(Witten: different string theories are limits of M-theory)

String theories require 10/11 dim space-time.



Extra Dimensions
Einstein (1915): 4dim space-time 

(gravity is caused by space-time curvature)

Kaluza-Klein (1919): 4dim space-time + 1extra dim 
(electro-magnetism is caused by curvature in extra dim)
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Extra Dimensions
Einstein (1915): 4dim space-time 

(gravity is caused by space-time curvature)

Make extra dimension compact and hide it.

Kaluza-Klein (1919): 4dim space-time + 1extra dim 
(electro-magnetism is caused by curvature in extra dim)

additional spatial dimension curled up within every point



Extra Dimensions
Superstring theories live in 10 or 11 dimensions!

We need a compact 6-dimensional space, 
to make an effectively 4-dimensional theory. 

Compact space has to have special properties 
to produce a theory that can describe nature.

Extra dimensions must be shaped as a 
Calabi-Yau manifold.

Quintic CYEugenio Calabi Shing-Tung Yau



Extra Dimensions
Extra dimensions must be shaped as a 

Calabi-Yau manifold.

2-dimensional example:

(compact, complex, 2n-dimensional Kähler-manifold with vanishing Ricci curvature)



Calabi-Yau Manifolds
2dim: torus• 4dim: K3 surface (simply connected)•

6dim: many examples, no general structure known•

Quintic CY

Kummer Surface
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Dualities  
in string theory

Mirror symmetry 
for CYs:

For every CY with �,

there is a CY with � �.
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Mirror Symmetry for K3 Surfaces

General Smooth K3 
 (symplectic manifold) 

(A-Side) 

Family of Complex K3 Manifolds 
(B-Side)

Dwork Pencil 

What makes these K3 surfaces mirrors?
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• Equivalent Hodge Structures • “Same” Rational Point Counts
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Counting Rational Points on 
Elliptic Curves (Complex One-

Dimensional Cubics in     ) 
Family of Elliptic Curves (tori):

Elliptic Integrals:

Counting Function for Family of Elliptic Curves:

|X�| = �(�1)

p�1
2 2F1

⇣
1�p
2 , 1�p

2 , 1;�
⌘
mod p

�y

2
z + x(x� z)(x� �z) = 0

P2

Z 1

1

dxp
x(x� 1)(x� �)

= 2F1(
1

2
,

1

2
, 1, ;�) = 1 +

1

4
�+

9

64
�

2 +
25

256
�

3 + ...



Generalizing the Dwork Pencil

The one-parameter Dwork Pencil 

The three-parameter Kummer quartic serves as the natural 
generalization of the Dwork pencil, as it preserves some of the 

symmetry.
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Generalizing the Greene-Plesser Mechanism

We can establish elliptic fibrations both on our three-parameter Kummer quartic 
and the mirror of the Dwork pencil.

The elliptic fibration structure allows us to generalize the Greene-Plesser 
mechanism. We then obtain the three-parameter generalization of the mirror of the 

generalized Dwork pencil.



Counting Rational Points on K3 Surfaces 
We established a three-parameter family of K3 surfaces generalizing the Greene-

Plesser mechanism.

Through using the elliptic fibration on the three-parameter mirror family, we prove 
the following theorem:

Theorem: The counting function (of rational points) on the three-parameter family 
of generalized mirror K3 surfaces can be computed explicitly (it is a multivariate 

generalization of the Gauss hypergeometric function).                                             
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Thank You!
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