Kummer Surfaces

Noah Braeger

What is a Kummer Surface?

• A Kummer surface is the minimum resolution of the quotient of an abelian surface over the complex numbers and the minus identity involution.

$$Kum(A) = A / < -\mathbb{I} >$$

• We will consider the case where A is the Jacobian of a genus two curve.

$$Kum(Jac(C)) = Jac(C) / < -\mathbb{I} >$$

Genus Two Curves and the Shioda Sextic

• In weighted projective space, the Rosenhain normal form of a genus two curve is given as

$$C: Y^2 = XZ(X - Z)(X - \lambda_1 Z)(X - \lambda_2 Z)(X - \lambda_3 Z)$$

• The Shioda sextic is the hypersurface obtained through taking the quotient of $C^{(2)}$ with its hyper elliptic product involution.

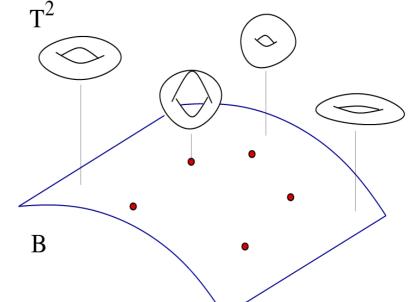
$$ilde{z_4}^2 = z_1 z_3 (z_1 - z_2 + z_3) \prod_{i=1}^3 (\lambda_i^2 z_1 - \lambda_i z_2 + z_3)$$

 For a genus two curve in Rosenhain normal form, the Shioda sextic is birational to Kum(Jac(C))

Kummer Surfaces and Elliptic Fibrations

 We can analyze the Shioda sextic as an elliptic fibration over the Riemann sphere through bringing it into Weierstrass normal form. τ²

$$Y^{2} = 4X^{3} - g_{2}(T)X - g_{3}(T)$$
$$\mathbb{P}^{1} = \left\{ T \in \mathbb{C} \right\} \cup \left\{ \infty \right\}$$



 This fibration emits the following singular fibers and Mordell-Weil group

$$2I_0^* + 6I_2 \qquad \qquad MW = (\mathbb{Z}/2\mathbb{Z})^2 \oplus <1 >$$

Normal Forms for Kummer Surfaces

 The Shioda sextic defines a double cover of twodimensional projective space branched along six lines which are tangent to a common conic.

$$egin{aligned} z_1=0,\, z_3=0,\, z_1-z_2+z_3=0,\, \lambda_i^2 z_1-\lambda_i z_2+z_3=0,\, ext{where}\,\, 1\leq i\leq 3\ &z_2^2-4z_1z_3=0 \end{aligned}$$

• We can define a proper transformation from the Shioda sextic to a nodal quartic in three-dimensional projective space known as the Cassels-Flynn quartic.

$$K_2(z_1, z_2, z_3)z_4^2 + K_1(z_1, z_2, z_3)z_4 + K_0(z_1, z_2, z_3) = 0$$

Normal Forms for Kummer Surfaces

• The Cassels-Flynn quartic is isomorphic to the Gopel-Hudson quartic in three-dimensional projective space.

 $0 = X_0^4 + X_1^4 + X_2^4 + X_3^4 + 2DX_0X_1X_2X_3 - A(X_0^2X_3^3 + X_1^2X_2^2) - B(X_0^2X_1^2 + X_2^2X_3^2) - C(X_0^2X_2^2 + X_1^2X_3^2)$

 $A,B,C,D\in\mathbb{C}$ such that $D^2=A^2+B^2+C^2+ABC-4$

• In letting A = B = C = 0 and $D = 2\lambda$ for $\lambda \in \mathbb{C}$, we obtain a one-parameter family of quartics in three-dimensional projective space, and, once we have resolved the singularities, a one-parameter family of K3 surfaces.

Greene-Plesser Orbifolding and Mirror Symmetry

• Through the Greene-Plesser orbifolding procedure, we are allowed to construct the mirror family of K3 surfaces for our special family of K3 surfaces.

$$x_1 x_2 x_3 (x_1 + x_2 + x_3 + 1) + \frac{\iota}{4^4} = 0$$
$$x_1 = \frac{X_1^3}{4X_0 X_2 X_3 \lambda}, x_2 = \frac{X_2^3}{4X_0 X_1 X_3 \lambda}, x_3 = \frac{X_3^3}{4X_0 X_1 X_2 \lambda}, t = \frac{1}{\lambda^4}$$

+

Mirror Family and Elliptic Fibrations

 We can analyze the mirror family of K3 surfaces as an elliptic fibration through bringing it into Weierstrass normal form.

$$Y^{2} = 4X^{3} - g_{2} \left(-\frac{3^{3}t}{4^{4}u^{3}(u+1)} \right) (u(u+1))^{4} - g_{3} \left(-\frac{3^{3}t}{4^{4}u^{3}(u+1)} \right) (u(u+1))^{6}$$

• This fibration emits the following singular fibers and Mordell-Weil group

$$IV^* + I_{12} + 4I_1$$
 $MW = (\mathbb{Z}/3\mathbb{Z})^2$