Isogenies of K3 Surfaces of Rank 18

Noah Braeger
Utah State University

Background

- A correspondence from a variety X to a variety Y is taken to be a subset Z of $X \times Y$ such that Z is finite and surjective over each component of X.
- In (van Geemen, Top, 2006), a dominant rational map from the one-parameter twisted Legendre pencil \mathcal{X}_t to $Kum(\mathcal{E}_t \times \mathcal{E}_t^{(t+1)})$ was constructed over a finite extension of Q(t).
- In (Ahlgren, Ono, Penniston, 2002), certain Galois representations related to the K3 surfaces and abelian surfaces involved were shown to be isomorphic. This suggested the existence of an algebraic cycle realizing correspondence between \mathcal{X}_t and $Kum(\mathcal{E}_t \times \mathcal{E}_t^{(t+1)})$. van Geemen and Top realized this algebraic cycle explicitly as the graph of the rational map in the cartesian product.

Results

- We compute explicit geometric isogenies between $Kum(Jac(\mathcal{C}_0))$, $Kum(\mathcal{E}_1 \times \mathcal{E}_2)$, and \mathcal{X} . Additionally, we compute normal forms for these K3 surfaces as quartic hyper surfaces, double quadric surfaces, double sextic surfaces, and Jacobian elliptic surfaces.
- The double coverings define correspondences between $Kum(Jac(\mathcal{C}_0))$ and \mathcal{X} , and \mathcal{X} and $Kum(\mathcal{E}_1 \times \mathcal{E}_2)$, generalizing the results of van Geemen and Top.

Overview

- 1. Gluing Construction
- 2. Abelian Surfaces
- 3. K3 Surfaces
- 4. Legendre Pencil

Gluing Construction

We consider a genus two curve with elliptic involution \mathcal{C}_0

The composition of the elliptic involution with the hyperelliptic involution defines a second elliptic involution. Both elliptic involutions define rational quotient maps.

For the six Weierstrass points of C_0 and the two ramification points of both double covers:

$$\begin{cases}
P_{2}, P_{3} \\
\{P_{1}, P_{5} \} \\
\{P_{5}, P_{6} \} \\
\{Q_{2,+}, Q_{2,-} \}
\end{cases}
\xrightarrow{\pi_{\mathcal{E}_{1}}} \mathcal{E}_{1}[2]$$

$$\begin{cases}
P_{2}, P_{3} \\
\{P_{1}, P_{5} \} \\
\{P_{5}, P_{6} \} \\
\{Q_{1,+}, Q_{1,-} \}
\end{cases}
\xrightarrow{\pi_{\mathcal{E}_{2}}} \mathcal{E}_{2}[2]$$

Gluing Construction

We associate with the branch locus of $\pi \mathcal{E}_1$ and $\pi \mathcal{E}_2$ the effective divisors

$$B_1 = [\pi_{\mathcal{E}_1}(Q_{1,+}) + \pi_{\mathcal{E}_1}(Q_{1,-})] \quad B_2 = [\pi_{\mathcal{E}_2}(Q_{2,+}) + \pi_{\mathcal{E}_2}(Q_{2,-})]$$

Conversely, for $\mathcal{L}_l^{\otimes 2} \cong \mathcal{O}_{\mathcal{E}_l}(B_l)$, the data $(\mathcal{E}_l, \mathcal{L}_l, B_l)$ determines \mathcal{C}_0 uniquely, and is equivalent to the unordered pair $\{\Lambda_1, \Lambda_2\}$, where $\Lambda_1 \neq \Lambda_2$ and

$$C_0 \cong \left\{ [X:Y:Z] | Y^2 = \left(X^2 - Z^2 \right) \left(X^2 - \frac{\Lambda_1}{\Lambda_2} Z^2 \right) \left(X^2 - \frac{\Lambda - 1}{\Lambda_2 - 1} Z^2 \right) \right\}$$

Abelian Surfaces

We proceed using the results of (Clingher, Malmendier, Shaska, 2019) and (Clingher, Malmendier, Shaska, 2020).

We consider the principally polarized abelian surface $Jac(C_0)$ and its group of 2-torsion points.

$$A = Jac(\mathcal{C}_0)$$
 $P_{ij} = [P_i + P_j - 2P_6] \in A[2], \text{ with } 1 \le i < j \le 6$

There are 15 inequivalent Goepel groups.

$${P_{66}, P_{ij}, P_{kl}, P_{mn}}$$
 such that ${i, j, k, l, m, n} = {1, \dots, 6}$

Proposition: For our 15 Goepel groups,

- One is such that $A/G \cong \mathcal{E}_1 \times \mathcal{E}_2$ (and $T = H \oplus H$)
- Six are such that $A/G' \cong Jac(\mathcal{C}_0') \in \mathcal{H}_4$ (and $T = H \oplus \langle 2 \rangle \oplus \langle -2 \rangle$)
- Eight are such that $A/G'' \cong Jac(\mathcal{C}'_0) \in \mathcal{H}_{16}$ (and $T = H \oplus \langle 4 \rangle \oplus \langle -4 \rangle$)

The 15 components of the Humbert surface \mathcal{H}_4 in $\mathbb{H}/\Gamma_2(2)$ can be identified with the 15 Goepel groups.

K3 Surfaces

The different sets of Goepel groups allow us to define (2,2)-isogenies, where $\Psi(P,Q) = [\pi_{\mathcal{E}_1}(P) + \pi_{\mathcal{E}_2}(Q) - 2P_{66}]$

The image of two-torsion points label even eights on a Kummer surface. Taking the double cover branched along these even eights gives us new K3 surfaces. We then quotient by a Nikulin involution produced by translation by a 2-torsion point.

K3 Surfaces

The Kummer surface $Kum(Jac(\mathcal{C}))$ can be regarded as the minimal resolution of a quartic hypersurface in three-dimensional projective space.

$$W^4 + X^4 + Y^4 + Z^4 + 2DWXYZ - A(W^2Z^2 + X^2Y^2) - B(W^2X^2 + Y^2Z^2) - C(W^2Y^2 + X^2Z^2) = 0$$

Theorem: Over $\mathbb{Q}(\Lambda_1, \Lambda_2)$, we have a similar quartic for $Kum(Jac(\mathcal{C}_0))$ if and only if one of 15 relations hold.

$$Z_{00}^4 + (1 - \Lambda_1)(1 - \Lambda - 2)Z_{01}^4 + \Lambda_1\Lambda_2Z_{10}^4 + \Lambda_1\Lambda_2(1 - \Lambda_1)(1 - \Lambda_2)Z_{11}^4 - (2 - \Lambda_1 - \Lambda_2)(Z_{00}^2Z_{01}^2 + \Lambda_1\Lambda_2Z_{10}^2Z_{11}^2)$$
$$-(2\Lambda_1\Lambda_2 - \Lambda_1 - \Lambda_2)(Z_{00}^2Z_{11}^2 + Z_{01}^2Z_{10}^2) - (\Lambda_1 + \Lambda_2)(Z_{00}^2Z_{10}^2 + (1 - \Lambda_1)(1 - \Lambda_2)Z_{01}^2Z_{11}^2) = 0$$

The 15 components of \mathcal{H}_4 can be identified with these relations.

K3 Surfaces

 $Kum(Jac(\mathcal{C}))$ is birationally equivalent to a double sextic surface branched along the union of six lines tangent to a common conic.

 $Jac(C_0) \in \mathcal{H}_4$ if and only if three non-adjacent nodes in the Kummer plane are co-linear. (Birkenhake, Wilhelm, 2003). We can identify the co-linear points in the Kummer plane to the corresponding Goepel group.

Components of $\mathcal{H}_4 \in \mathbb{H}/\Gamma_2(2)$

I		
$2\tau_{12} + \tau_{11}\tau_{22} - \tau_{12}^2 = 0$	$\lambda_1 = \lambda_2 \lambda_3$	\bar{D} = 0 { p_{15},p_{23},p_{46} }
II		
$\tau_{11} + 2\tau_{12} = 0$	$\lambda_1 - \lambda_2 = \lambda_3 (1 - \lambda_2)$	$B + C = 0 \mid \{p_{14}, p_{23}, p_{56}\} \mid$
$\tau_{11} + 2\tau_{12} - (\tau_{11}\tau_{22} - \tau_{12}^2) = 0$	$\lambda_1(1-\lambda_3)=\lambda_2(\lambda_1-\lambda_3)$	$B-C=0 \mid \{p_{16},p_{23},p_{45}\} \mid$
III		
$2\tau_{12} - \tau_{22} = 0$	$\lambda_3 = \lambda_1 \lambda_2$	$A - C = 0 \mid \{ p_{12}, p_{35}, p_{46} \} \mid$
$2\tau_{12} - \tau_{22} + (\tau_{11}\tau_{22} - \tau_{12}^2) = 0$	$\lambda_2 = \lambda_1 \lambda_3$	$A + C = 0 \mid \{p_{13}, p_{25}, p_{46}\} \mid$
$\tau_{11} - \tau_{22} = 0$	$\lambda_1 - \lambda_2 = \lambda_2(\lambda_1 - \lambda_3)$	$A + B = 0 \mid \{ p_{15}, p_{26}, p_{34} \} \mid$
$\tau_{11} - \tau_{22} + (\tau_{11}\tau_{22} - \tau_{12}^2) = 0$	$\lambda_1 - \lambda_3 = \lambda_3(\lambda_1 - \lambda_2)$	$A - B = 0 \mid \{ p_{15}, p_{24}, p_{36} \}$
IV		
$2 au_{12}$ = 1	$\lambda_2 - \lambda_3 = -\lambda_1(1 - \lambda_2)$	$-A + B - C - D + 6 = 0 \mid \{p_{12}, p_{34}, p_{56}\}$
$2\tau_{12} + \tau_{22} = 1$	$\lambda_3(1-\lambda_2)=-\lambda_1(\lambda_2-\lambda_3)$	$A + B + C + D + 6 = 0 \mid \{p_{12}, p_{36}, p_{45}\} \mid$
$\tau_{11} + 2\tau_{12} = 1$	$\lambda_2 - \lambda_3 = \lambda_1 (1 - \lambda_3)$	$-A - B + C + D + 6 = 0 \mid \{p_{13}, p_{24}, p_{56}\} \mid$
$\tau_{11} + 2\tau_{12} + \tau_{22} - (\tau_{11}\tau_{22} - \tau_{12}^2) = 1$	$\lambda_1(\lambda_2-\lambda_3)=\lambda_2(1-\lambda_3)$	$A - B - C - D + 6 = 0 \mid \{p_{13}, p_{26}, p_{45}\} \mid$
$4\tau_{12} + 3(\tau_{11}\tau_{22} - \tau_{12}^2) = 1$	$\lambda_2 - \lambda_3 = \lambda_2(\lambda_1 - \lambda_3)$	$-A + B - C + D + 6 = 0 \mid \{p_{14}, p_{35}, p_{26}\} \mid$
$4\tau_{12} + \tau_{22} + 3(\tau_{11}\tau_{22} - \tau_{12}^2) = 1$	$\lambda_1 - \lambda_3 = \lambda_1(\lambda_2 - \lambda_3)$	$A + B + C - D + 6 = 0 \mid \{p_{16}, p_{24}, p_{35}\} \mid$
$\tau_{11} + 4\tau_{12} + 3(\tau_{11}\tau_{22} - \tau_{12}^2) = 1$	$\lambda_2 - \lambda_3 = -\lambda_3(\lambda_1 - \lambda_2)$	$-A - B + C - D + 6 = 0 \mid \{p_{14}, p_{25}, p_{36}\} \mid$
$\tau_{11} + 4\tau_{12} + \tau_{22} + 2(\tau_{11}\tau_{22} - \tau_{12}^2) = 1$	$\lambda_1 - \lambda_2 = -\lambda_1(\lambda_2 - \lambda_3)$	$A - B - C + D + 6 = 0 \mid \{ p_{16}, p_{25}, p_{34} \}$

Legendre Pencil

The two-parameter twisted Legendre pencil is a double sextic surface of Picard rank 18 given by

$$\mathcal{X}: y^2 = z_0 z_1 (z_0 - z_1)(z_0 - z_2)(z_2^2 + 2\rho_1 z_1 z_2 + \rho_2^2 z_1^2), \text{ with } \rho_1, \rho_2 \in \mathbb{Q}$$

The branch locus consists of six lines, one of which is coincident with two different pairs of lines. The pencil of lines through the point $[z_0:z_1:z_2]=[1:0:0]$ induces an elliptic fibration on \mathcal{X}

Legendre Pencil

 $Kum(\mathcal{E}_1 \times \mathcal{E}_2)$ is birational to the double quadric surface obtained as a certain double cover branched along a locus of bidegree (4,4) in $\mathbb{P}^1 \times \mathbb{P}^1$. Projecting to \mathbb{P}^1 gives an elliptic fibration. We utilize a more complicated fibration.

The double sextic associated with $Kum(Jac(C_0))$ defines an elliptic fibration. We utilize a more complicated fibration.

Choosing the even eights on \mathcal{X} as the branch locus of a double cover yields new K3 surfaces. Alternatively, we quotient by a Nikulin involution produced by translation by 2-torsion section.

Results/Outlook

- We computed normal forms for $Kum(Jac(\mathcal{C}_0))$, $Kum(\mathcal{E}_1 \times \mathcal{E}_2)$, and \mathcal{X} as quartic hyper surfaces, double quadric surfaces, double sextic surfaces, and Jacobian elliptic surfaces.
- A correspondence from a variety X to a variety Y is taken to be a subset Z of $X \times Y$ such that Z is finite and surjective over each component of X. The double coverings we constructed define correspondences between $Kum(Jac(\mathcal{C}_0))$ and \mathcal{X} , and \mathcal{X} and $Kum(\mathcal{E}_1 \times \mathcal{E}_2)$

$$Kum(\mathcal{E}_1 \times \mathcal{E}_2) \longrightarrow \mathcal{X} \longrightarrow Kum(Jac(\mathcal{C}_0)) \longrightarrow Kum(\mathcal{E}_1 \times \mathcal{E}_2)$$

- Using the tools developed in (Malmendier, Sung, 2019) and (Braeger, Malmendier, Sung, 2020), we aim to count the number of rational points on these K3 surfaces using character sums.
- The correspondences imply isomorphisms between 4-dimensional Galois representations related to the transcendental lattice of the K3 surface X (on the one hand) and the abelian surfaces involved on the other.

Thank You!

Acknowledgements: Dr. Malmendier and Dr. Sung USU URCO (Undergraduate Research and Creative Opportunities)
Grant Program.